
Quick Manual: Local-Haplotype Variant Calling Software

(LocHap -ver1.0)

Subhajit Sengupta1, Kamalakar Gulukota2, Yitan Zhu1, Yuan Ji1,3,∗

1Center for Biomedical Research Informatics, NorthShore University HealthSystem, Evanston, IL, USA.

2Center for Molecular Medicine, NorthShore University HealthSystem, Evanston, IL, USA.

3Department of Health Studies, University of Chicago, Chicago, IL, USA.

∗Email for Correspondence: koaeraser@gmail.com

1



1 Ver-1.0 Release Note

We have tested LocHap on mac OSX 10.8.4 and 10.9, CentOs 6.5, and Ubuntu 12.04.4 LTS. Presently

we have not tested our software on any Windows operating system.

2 Prerequisites

Installation of LocHap requires g++ compiler and GNU Make. If users don’t have those already,

then for UNIX system they can download them from here: ftp://ftp.gnu.org/gnu/. For mac OSX,

installing Xcode (IDE for Apple’s OSX and iOS) would automatically install those tools.

3 Installation

LocHap is an open-source self-contained computational tool. Standard installation of LocHap places

the main functions as well as all the required libraries on the user’s computer. It also includes a small

example for illustration purposes. In the small example, a small bam and a vcf file are also copied to

the user’s computer.

For format specifications of bam and vcf files, see http://samtools.github.io/hts-specs/

SAMv1.pdf and http://samtools.github.io/hts-specs/VCFv4.1.pdf, respectively.

Installation steps are as follows.

1. Download and extract the “LocHap-release-v1.tar.gz” file from the download section of

http://www.compgenome.org/

and by default all the files would be extracted inside the directory named “LocHap-release-v1”.

2. In the extracted directory, in a terminal prompt, run the script “install.sh” which is an executable

file inside the directory. It would take approximately 5 to 6 minutes to finish the installation

process.

3. If successful, LocHap binary executable would be generated in the “bin” subdirectory under the

directory “LocHap-release-v1”.

A screenshot of running the installer is provided below in Fig. 1.

2



Figure 1: Screenshot of installation process

4 Basic Usage

For general applications of LocHap, a user must provide the following two types of input files for

biological samples to be analyzed.

• A sorted (coordinate-based) bam file and the corresponding bam index file (bai).

• A vcf file containing SNP information for the sample that the bam file characterizes and the one

that user wants to run LH analysis.

3



When multiple samples are available for analysis, the vcf file must contain all the corresponding bam

files, and LocHap can be executed in parallel, one per sample.

The main command for executing LocHap for one particular sample is’

./LocHap --vcf 〈full name of the vcf file〉 --bam 〈full name of the bam file〉 --sample 〈sample name〉

The 〈sample name〉 is a standard field in any vcf file. Users can find the sample name therein. The

header line in any vcf has 8 fixed, mandatory columns. They are: #CHROM,POS, ID, REF, ALT,

QUAL, FILTER, INFO. If genotype data is present in the file, these are followed by a FORMAT

column header, then an arbitrary number of sample IDs. The header line is tab-delimited.

Screenshot of this main command is provided below in Fig. 2.

Figure 2: Screenshot for executing the main command of LocHap

There are few optional flags that can be added to this main command.

• out: [string] – output file prefix which has default value same as sample name. Otherwise if user

provides “output” as the prefix “output.hcf” will be generated.

• sig: [boolean] – significant flag which sets a flag for printing only DNA segments (see main paper

for definition of a DNA “segment”) with at least one significant haplotype called. The default

value is currently set to 0, so all segments will be printed.

4



• size: [integer] – Max base pairs between two adjacent SNVs. This is an important value and is

denoted as K in the paper. See §2.1 in Online Methods (default is 500 NTs and must be between

50 and 1000).

• qual: [integer] LocHap ignores all reads with Phred-scaled Mapping Quality less than qual.

LocHap Ignores all bases with Base Quality less than qual (default is set to 30 and it must

be greater than 15)

• igv: [boolean] – IGV compatibility flag which sets a flag for printing in format suitable for loading

into IGV software from Broad Institute. By default the output is written in native hcf format

and the output file name would be 〈sample name〉.hcf or 〈sample name〉.igv, based on the choice

of the flag.

LocHap handles one bam at a time and that sample has to be inside the vcf ; it does not care if

other samples are inside that vcf. For analyzing multiple samples, one can parallelize the analyses,

one for each sample.

4.1 Demo Example

In the “Example” subdirectory under the directory “LocHap-release-v1”, a test example is prepared to

demonstrate the main functions of LocHap, which can be executed by the following steps:

• Go to the “Example” subdirectory.

• Execute the script “run-example.sh” (Linux command “./run-example.sh”).

• If successful, an output hcf file will be produced (called “tiny.hcf”) with a message on the screen

(see Fig. 3). The “tiny.hcf” file is an ASCII tab-delimited text file (see Online Methods for detail)

containing all the local haplotype variants produced from the proposed statistical inference. See

section 5 for detail of a hcf file.

A screenshot is provided below in Fig. 3 for the commands above.

5



Figure 3: Screenshot for testing an example

5 Haplotype Call Format (hcf )

The output segments from LocHap are written in the Haplotype Call Format (hcf ). See Figure 4.

Similar to vcf, an hcf file is a tab-delimited text file. There are a few header fields that contain the

field names and their descriptions. After the initial header fields, each line in the hcf file represents a

local haplotype (might not be a variant) and has seven column fields, displayed from left to right as:

chromosome name (CHROM), positions on the chromosome (POS), nucleotides at those positions in

the reference genome (REF), number of significant haplotypes (NumSig), called haplotypes (HAP-Call),

all the possible haplotypes (All-HAP), data for the sample (DataForSample=〈sample-name〉).

Most of the fields are self-explanatory except the following – in the “Hap-Call” field, we include the

posterior probability of each haplotype variant that is deemed statistically significant. The “All-HAP”

field contains the posterior probability (before semicolon) and corresponding posterior false discovery

rate (FDR) (after semicolon) for each possible haplotype. Haplotype variants in the “Hap-Call” field

6



are generated from those in “All-HAP” by using an FDR threshold of 0.01.

In the last field, a few basic statistics about the input-data are given, which include total number of

SNPs (nSNP), total number of reads (nTot), number of reads having at least one entry in one of the

SNP position (nACGT), number of blank reads (nBlank), number of discrepant reads (nDisc), number

of reads with no missing entries, missing entries in one position or two positions or three positions (nM0,

nM1, nM2, nM3) and number of clusters directly observed from the data (nClus). Note that, number

of unique groups of data that has no missing SNP defines the number of clusters.

Figure 4: Screenshot of a sample hcf file.

6 Integrated Genome Viewer (IGV) Compatibility

We have an optional “igv” flag to generate an output file (with extension .igv). The “.igv” output files

can be visualized using IGV. When loaded, SNPs belonging to an LHV are shown in red bars while

those not in a LHV are shown in blue bars. Screenshot of this command is provided below in Fig. 5.

7



Figure 5: Screenshot for executing the command in order to generate IGV compatible format

When multiple samples are analyzed by LocHap, for each sample an hcf file will be produced. IGV

can open multiple hcf files as shown in Fig 6.

8



sample IDs LHVs are denoted by red bars

Figure 6: Screenshot of outputs from multiple samples opened in the IGV viewer

7 Optional Filtering

In order to perform type I or type II or type III filtering as mentioned in §6.1 of our Online Methods,

a binary executable file named filter is also generated at the time of the installation inside the “bin”

subdirectory under the directory “LocHap-release-v1”. A user needs to provide the following files (in

the strict order required by the program) in order to carry out this optional filtering:

• An hcf file generated by LocHap for one particular sample.

• A sorted (coordinate-based) bam file and the corresponding bam index file (bai) for that sample.

• A vcf file containing SNP information for that sample.

The main command for executing the filter for one particular sample is:

9



./filter 〈full name of the hcf file〉 〈full name of the bam file〉 〈full name of the vcf

file〉 〈sample name〉 〈full name of output directory〉 〈filter type〉

User can run the filter according to the choice of the stringency level for the filtering. He or she can

enter 1 or 2 or 3 in 〈filter type〉 in order to run type I or type II or type III filter, respectively.

In Figure 7, screenshot of the command for executing type I filter. For type II or type III filter, the last

field of the command needs to be replaced by 2 or 3, respectively while other fields remain exactly the

same.

Figure 7: Screenshot of executing the command for optional filtering

Note that, in the provided example, type I filter would remove all the segments from the hcf file that

is generated by LocHap. The output file generated after filtering is in the same format as the original

hcf file.

8 Tips

• Any bam file should be indexed and the index file (.bai) should be in the same directory with the

original bam file.

– In case there is no index file, it can be easily generated by executing the command below:

10



samtools index 〈name of the bam file〉

See http://samtools.sourceforge.net/samtools.shtml for command details.

• An input vcf file may consist of variant calls for multiple samples. To analyze all the samples,

run LocHap in parallel using multiple nodes, one per sample.

11




