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Abstract

Somatic mosaicism refers to the existence of somatic mutations in a fraction of somatic cells in a

single biological sample. Its importance has mainly been discussed in theory although experimental

work has started to emerge linking somatic mosaicism to disease diagnosis. Through novel statistical

modeling of paired-end DNA-sequencing data using blood-derived DNA from healthy donors as well

as DNA from tumor samples, we present an ultra-fast computational pipeline, LocHap that searches

for multiple single nucleotide variants (SNVs) that are scaffolded by the same reads. We refer to

scaffolded SNVs as local haplotypes. When a local haplotype exhibits more than two genotypes,

we call it a local haplotype variant (LHV). The presence of LHVs is considered evidence of somatic

mosaicism because a genetically homogeneous cell population will not harbor LHVs. Applying LocHap

to whole-genome and whole-exome sequence data in DNA from normal blood and tumor samples, we

find wide-spread LHVs across the genome. Importantly, we find more LHVs in tumor samples than

in normal samples, and more in older adults than in younger ones. We confirm the existence of LHVs

and somatic mosaicism by validation studies in normal blood samples. LocHap is publicly available

at http://www.compgenome.org/lochap.
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INTRODUCTION

Many cancers arise from a series of mutational events occurring throughout a person’s life span [1, 2].

Considerable evidence [3,4] has accumulated supporting the presence of genetically heterogeneous cells in

a somatic sample, a phenomenon called somatic mosaicism, which may be a precursor to the onset of many

cancers [5]. However, there are no effective and economical tools that can reliably measure the presence

and degree of somatic mosaicism in a biological sample. Single cell sequencing [6] in principle provides the
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genetic landscape of each individual cells, although in practice only up to hundreds or thousands of cells

can be measured due to the formidable cost of money and effort. In contrast, next-generation sequencing

(NGS) technologies assemble an average genome sequence of all the cells in a sample, assuming cellular

homogeneity. In the presence of somatic mosaicism, the average genome may not be a good representation

of the sample. Despite continuous breakthroughs in DNA sequencing since the completion of the human

genome project [7], researchers are still unable to precisely dissect individual cellular genomes on large

scales.

Somatic mosaicism is often seen in samples derived from patients with cancer. Future targeted and per-

sonalized cancer therapy must take into account mosaic tumor cells in order to better customize therapies

[8, 9]. In contrast, somatic mosaicism in samples from healthy individuals has been discussed as a theory

over the last decade [10–12], with only a few recently reported examples [5,13–20]. Due to the availability

of high-throughput DNA sequencing, hundreds of millions of short reads can now be mapped to cover

whole genomes or exomes. If somatic mosaicism is present in a biological sample, the DNA sequences of

the short reads are expected to reflect the variations of the cellular genomes at the single nucleotide level.

Based on this concept, pioneering work in 2014 by Genovese et al. [5] reported the presence of somatic

mutations in blood samples as precursor of hematologic cancer and death. They carefully constructed

bioinformatics and statistical methods to filter single nucleotide variants (SNVs) based on whole-exome

and whole-genome sequencing data and identified clonal somatic blood samples with somatic mutations.

Because the somatic mutations were only present in a fraction of the cells, the blood sample was considered

mosaic. Their main computational analysis aimed to identify SNVs with variant allele fractions (VAFs)

that are far smaller than 0.5 and attributed these SNVs to the existence of small cellular subpopulations

harboring the SNVs. Computationally it is challenging to differentiate true biological subpopulations from

noise and artifact in the NGS data since both would give rise to small VAFs [21].

We propose here a different approach. Instead of using SNVs, we consider local haplotypes (LHs) for

calling somatic mosaicism. A LH is a scaffold of multiple proximal SNVs (Fig. 1). Examining paired-end

DNA-sequencing data, we find that sometimes multiple SNVs are simultaneously mapped by the same

short reads. The short reads provide linked genotypes for the SNVs. In Fig. 1, two SNVs are considered

in each example and some short reads cover both SNVs. Treating the scaffold of the two SNVs as an LH,

shown in Fig. 1, we observe three different genotypes with substantial read counts in each example. We

call such a LH a local haplotype variant (LHV). The presence of LHVs across the genome is direct evidence

supporting mosaicism and cellular heterogeneity because a homogeneous cell population can only manifest

up to two haplotypes. Therefore, the key idea of examining an LH instead of an SNV allows for direct

observation of more than two alleles in local genomes, a rare event for single loci but not for haplotypes.

Based on this idea, we develop an open-source, ultrafast, and powerful computational tool, LocHap, for

identifying LHVs using deep DNA-sequencing data from a single biological sample. We construct rigorous

statistics models that provide probability measure for the LHVs. We also introduce bioinformatic filters

that account for the usual noise and artifact in NGS data. However, the noise and artifact are partially

mitigated due to the use of LHVs instead of SNVs. We elaborate more on these points in the next

section. LocHap can be applied to any DNA-sequence data using paired-end reads and only requires a

binary alignment and mapping (bam) file, the associated index (bai) file, and the corresponding variant call
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format (vcf) file (Materials and Methods). These files are almost always generated from standard variant-

calling pipelines. To facilitate downstream analyses and experimental validation, we introduce a new file

format, the haplotype call format, or hcf, that contains a list of LHVs inferred by LocHap. An hcf file has

a tab-delimited format similar to a vcf file, and can be viewed in popular visualization tools like IGV [22].

The proposed hcf format is derived from the vcf format to facilitate visualization and interpretation.

However, unlike vcf which contains SNVs and other genetic variants, hcf only contains information about

LHVs, which is a scaffold of multiple local SNVs (each SNV is in the vcf file for the sample). Therefore, a

non-empty hcf file presents information supporting genetically heterogeneous samples.

MATERIALS AND METHODS

Main Idea

The basic idea of LHV calling is to probabilistically model short reads mapped to multiple proximal SNVs

and look for multi-allelic loci. In other words, we search for proximal SNVs that are scaffolded by short

reads and exhibit more than two alleles with high statistical confidence. For example, Fig. 1a shows an

LHV consisting of two SNVs, at chromosomal locations separated by only 97 base pairs. Examining data

“horizontally” across both SNVs, many reads scaffold the SNVs as they are mapped to both loci. There

are three directly observed haplotypes, GG, GC, and AG, with read frequencies 23, 10, and 9, respectively.

In addition, four other types of overlapping short reads cover only one of the two SNVs. Each type of short

reads potentially supports the presence of one or two different haplotypes and collectively they provide

information on how many and what haplotypes are present in the region. Using all the short reads, LocHap

employs a Bayesian hierarchical model, performs statistical inference accounting for the noise in the data,

and filters dubious LHV calls based on false discovery rates (FDR) [23,24].

Statistical Methods

SNV Segments

LocHap uses DNA-Seq data and assumes that base calling, reads alignment, and variant calling have been

completed and bam, bai, and vcf files are available for one or more samples. LocHap first constructs non-

overlapping segments on the genome, each of which is a set of continuous base pairs (bps) and contains

at least two proximal SNVs separated by no more than K bps apart. The segment is formed by starting

at a SNV, and extended to the next closest SNV as long as it is within K bps from the previous SNV.

The segment ends if the next closest SNV is more than K bps away. Therefore, each segment starts and

ends at a SNV, with potential multiple SNVs in between. A schematic illustration of DNA segmentation

is shown in Fig. 2.

Along the genome, we start with the first called SNV, and form as many segments as we can until we

reach the last called SNV. LocHap allows any integer K set by users as the maximum distance between

two adjacent SNVs. For short-read data, we allow K to vary between 50 and 1,000. Changing K values
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will affect the size and number of segments. Usually the value of K can be set to reflect the insert length

of the DNA sequencing experiment.

Probability Model for LHV Calling

LocHap analyzes each DNA segment separately. The goal of the analysis is to estimate the number and

sequences of the haplotypes within the segment. Assume N numbers of short reads are mapped to the

segment and each read overlaps with at least one SNV in the segment. Mapped reads that do not overlap

with any SNVs are discarded since they do not contribute to the haplotype calling.

For a given segment, let i = 1, . . . , N be the index of the mapped short reads. Assume that R SNVs

are present in the segment. We consider up to L = 2R candidate haplotypes that can be formed by R

SNVs. That is, we assume at each SNV, one can observe up to two different alleles (e.g., a reference and a

variant allele). More than two alleles are rarely observed from short reads for an SNV and most of them are

caused by sequencing error. We use j = 1, . . . , K to index possible haplotypes. The genotypes (nucleotide

sequences) of each candidate haplotype are denoted by hj = {hj1, . . . , hjR}, j = 1, . . . , L, where hjr takes

one of the four nucleotides, i.e., hjr ∈ {A,C,G, T} for r = 1, . . . , R. For example, in Fig. 1, R = 2 and

L = 2R = 4. In each example some short reads overlap with both SNVs. Specifically, for each short read

i, use si = {si1, . . . , siR} to denote an R-base DNA sequence of interest, where sir ∈ {A,C,G, T,M};
here M denotes a missing base readout when there is no overlap between a short read and an SNV. Let

s = {s1, . . . , sN} be the set of all short reads. One could define an indicator mir = I(sir = M) to denote the

missing base of si and set up a model f(mir | θ). We assume missing completely at random (MCAR) [25]

, which leads to conditional independence in the posterior inference. That is, conditional on s, parameters

in the model describing target haplotypes are independent of m = {mir, i = 1, . . . , N, r = 1, . . . , R}, the

vector of missing indicators. This greatly simplifies the inference procedure. The MCAR assumption is

proper here since in NGS experiment, typically the missing base in sir is due to that read i is not aligned

to base SNV r, which is caused by the limited read length as a technological limitation. Hence the missing

mechanism in sir has nothing to do with what sequences are observed or not observed.

Using standard missing data notations, let

sobs = {sir, where mir = 0 for i = 1, . . . , N ; r = 1, . . . , R}

and

smis = {sir, where mir = 1 for i = 1, . . . , N ; r = 1, . . . , R}

denote the observed and missing DNA sequences for reads i at SNV r, respectively, for all i’s and r’s.

Then {sobs, smis,m} are the complete data, and {sobs,m} are the observed data. We introduce a few

additional notations needed for modeling. Denote {λj = 1} or {λj = 0} the event that haplotype j is

present or absent in the sample, respectively. Apparently λj’s are key parameters of interest. Intuitively,

the sequence similarity between haplotype sequences hj and short read sequences si provides information

on which haplotype is present. For example, if si matches hj in most of the R bases, it is likely si is

generated from a DNA segment having haplotype j, thereby supporting the presence of the haplotype. To

4



model the similarity, we denote Aj(s
obs
i ) and Dj(s

obs
i ) the set of agreeing and disagreeing bases between si

and hj, respectively. Mathematically, they refer to

Aj(s
obs
i ) = {r : sir = hjr}; Dj(s

obs
i ) = {r : sir 6= hjr & sir 6= M}.

Denote I() the indicator function and let

Bi = {r : sir = M} and wi = |Bi| =
R∑

r=1

I(sir = M)

be the set of indices and number of missing bases of read i, respectively.

We propose a Bayesian probability model treating (sobs,m) as observed data and {smis, λj} as unknown

parameters. The inference is based on posterior probability that a haplotype j is present in the sample,

Pr(λj = 1 | sobs,m). The higher value the probability takes, the more likely haplotype j is present. We

will show next that this posterior probability can be calculated in a closed form.

Let λ = {λ1, . . . , λL} and λ−j = {λ1, . . . , λj−1, λj+1, . . . , λK} be the vector without the j-th component.

The posterior probability Pr(λj = 1 | s) can be calculated as follows.

Pr(λj = 1 | sobs,m) = Pr(λj = 1 | sobs,HHm) ∝ p(sobs | λj = 1)︸ ︷︷ ︸
likelihood

Pr(λj = 1)︸ ︷︷ ︸
prior

=
∑

λ−j∈YL−1

p(sobs | λj = 1,λ−j)Pr(λj = 1,λ−j)

=
∑

λ−j∈YL−1

∏
i=1

p(sobsi | λj = 1,λ−j)︸ ︷︷ ︸
I

Pr(λj = 1,λ−j)︸ ︷︷ ︸
II

 ,
(1)

where YL−1 denotes the set of all binary (0 or 1) strings of length (L− 1). The first equation is due to the

MCAR assumption. It can be shown (Supplementary Data) that

I =
L∑

j′=1

[
I(λj′ = 1) · c1i(λ)

1∑L
j̃=1 λj̃

×

∑
bi∈{A,C,G,T}wi

 ∏
r∈Aj′ (s

obs
i ,smis

i =bi)

(1− eir)×
∏

r∈Dj′ (s
obs
i ,smis

i =bi)

eir
3


 ,

where eir is the error probability for the DNA sequence called at base r on short read i. Typically eir

is known from upstream analysis, e.g., in the form of Phred quality score. LocHap requires user-assigned

values for eir with a default value of 0.001 (corresponding to a Phred score of 30). Alternatively, we

recommend setting eir = 10−logPh where Ph is the Phred score at the base r of read i [26].

Next, the second term (II) of Equation (1) is the product of independent prior term for each λj for
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all j = 1, · · · , L,

λj ∼ Beta-Bernoulli(α, β, n), where λj ∈ {0, 1}.

The beta-Bernoulli prior for λ is the marginal density of hierarchical construction in which

λ | τ ∼ Bernoulli(1, p); τ ∼ Beta(α, β).

Integrating out τ , we get a beta-Bernoulli prior given by

Pr(λ = 1) =
Γ(1 + α)Γ(β)

Γ(1 + α + β)

Γ(α + β)

Γ(α)Γ(β)
. (2)

To reflect the weak prior belief that a random haplotype has a low prior probability to be present in a

sample, we set α = 0.05 and β = 1 so that a priori the probability that haplotype j is present is only 5%.

FDR-based Inference and Calibration of eir

Denoting ξj = Pr(λj = 1 | sobs,m) the posterior probability that haplotype j is present in the sample.

Posterior inference is based on selecting the haplotypes with the largest ξj subject to an FDR threshold.

For example, with a desired FDR threshold of f0, compute

j∗ = max

{
j :

∑
k<j(1− ξ(k))
|{k : k < j}|

< f0

}
(3)

where ξ(k) is the ordered statistics with decreasing order and |{set}| is the cardinality of the set. Then

select all the haplotypes with ξj > ξj∗. Such a selection procedure is optimal [23,24] in controlling posterior

expected FDR.

All the parameters in the proposed Bayesian model are estimated directly. The models only depend

on one calibration parameter, eir, which must be given. The error rate eir captures the quality and Phred

quality score from base calling, an upstream analysis. In most cases, a Phred quality score of > 30 is

considered of high quality for a base, which translates to eir < 0.001 by definition (http://en.wikipedia.

org/wiki/Phred_quality_score). Also, shown in Ji et al. [26] a higher error rate leads to more noisy

inference, in our case, less confidence on haplotype calls. As an example, Table S1 (Supplementary Data)

provides a simulated data set in which each row represents a short read and its called bases, and a “−”

sign represents a missing base. Applying our proposed model with eir = 0.001 for all reads and bases, we

infer that three local haplotypes, AA, GA and GG, are present in the sample using an FDR threshold

f0 = 0.01. If we increase the eir to 0.2 we obtain only one local haplotype AA with f0 = 0.01. If we use

eir = 0.14, we get two significant local haplotypes AA and GG.

In LocHap, we remove reads having a mapping quality score less than 30; we also consider a base

missing if the Phred quality score of base calling is less than 30. These two steps ensure the high quality

of the reads and bases used in the statistical inference. Then we take a conservative value of 0.001 for all

the eir’s as the default setting. This is a conservative choice since 0.001 is the largest possible eir value
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after the above read filtering. As a less conservative choice, one could use the provided eir for each base

and read from the bam file.

Efficient Computational Algorithm

Posterior inference of LHVs centers at the calculation of Pr(λj = 1 | sobs). We re-list Equation (1) again

to facilitate the subsequent discussion, given by

Pr(λj = 1 | sobs) ∝
∑

λ−j∈YL−1


N∏
i=1

Pr(sobsi | λj = 1,λ−j)︸ ︷︷ ︸
I

Pr(λj = 1,λ−j)︸ ︷︷ ︸
II︸ ︷︷ ︸

III

 (4)

As mentioned before, if the number of SNVs is R, then the number of possible haplotypes L = 2R,

assuming up to two alleles can be observed at each SNV. Correspondingly, we have L number of λj’s to

estimate and the total different configurations of all the λj’s is 2L = 22R , a super exponent of R. Therefore,

when R is slightly increased, say from 2 to 4, the number of configurations to be calculated increases from

64 to 65, 536. This super-exponential increment calls for efficient computation.

A straightforward way to calculate the right hand side of the Equation (4) would follow the derivation

in the previous section, resulting in computing multiple loops of summations and products. It would be

time consuming. We take a more efficient approach. For each j = 1, 2, . . . , L, summing over all the binary

configurations of λ−j amounts to 2L−1 many sums. Each term under the outer sum is denoted by III in

(4). A straightforward computation of (4) would calculate term III (L ∗ 2L−1) times for all the j. Same

amount of computation is also required for calculation of Pr(λj = 0 | sobs) for all j = 1, 2, . . . , L. But

careful examination of the terms to be added reveals that some terms are repeatedly calculated L times.

For example, assume L = 4. In calculating the probability for the event Pr(λ1 = 1 | sobs), we have to sum

over all the other 2L−1 = 8 configurations of λ−1. Let us take one specific configuration from that set of 8

configurations, λ−1 = 101 (meaning the three elements in λ−1 take values 1, 0, and 1, respectively). When

λ1 = 1, the full vector λ takes 1101. However, the value 1101 will also show up in the computation of

Pr(λ2 = 1 | sobs) with λ−2 = 101, Pr(λ3 = 0 | sobs) with λ−3 = 111 and Pr(λ4 = 1 | sobs) with λ−4 = 110.

Therefore, we only need to compute the joint probability of λ = {1101} once and re-use it for the other

three terms. Similarly, for all other possible configurations of λ, we only need to compute it once. The

straightforward way of computation would calculate each configuration four times.

Once all 2L configurations are calculated, we add up the probabilities from appropriate configurations

in order to calculate the probability Pr(λj = 1 | sobs). We first put decimal indices against all the

configurations of λ from 0 to (2L − 1) by treating the 1-st position as the most significant bit (MSB)

of a binary string and convert the binary string to its decimal equivalent number. For example, the

decimal index of λ = {λ1 = 1, λ2 = 1, λ3 = 0, λ4 = 1} is 13. Denote each configuration by Cl where l =

0, 1, . . . 2L−1. Once indexing is done, then for each event we sum up the probabilities for a fixed (computed

beforehand) set of indices of configurations. For example, for the computation of Pr(λ2 = 1 | sobs) the
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set of indices is {4, 5, 6, 7, 12, 13, 14, 15}. Similarly for Pr(λ3 = 0 | sobs) that set is {0, 1, 4, 5, 8, 9, 12, 13}.
Denote the set of indices for computing Pr(λ1 = 1 | sobs) and Pr(λ1 = 0 | sobs) by Vj1 and Vj0, respectively.

Below, we propose Algorithm 1 for computing (4).

Algorithm 1 Algorithm for computing Pr{λj = 1 | sobs} ∀j = 1, 2, . . . , L

Index all the configurations of λ from 0 to (2L − 1).
Enumerate Vj1 and Vj0 for all j = 1, 2, . . . , L.
Compute Pr(sobs | Cl) and Pr(Cl) for all l = 0, 1, . . . , 2L − 1.
for j = 1, 2, . . . , L do

P1(j)←
∑

l∈Vj1 Pr(s
obs | Cl) Pr(Cl).

P0(j)←
∑

l∈Vj0 Pr(s
obs | Cl) Pr(Cl).

Pr(λj = 1 | sobs)← P1(j)
P1(j)+P0(j)

.
end for

Calculation of Pr(sobs | Cl) for all l = 0, 1, . . . , 2L − 1 in Algorithm 1 is carried out with an addi-

tional algorithm that takes advantage of the structured probability formulation. The detail is shown in

Supplementary Data. Calculation of Pr(Cl) is trivial based on the independent prior of λj’s. Because of

the closed-form derivation for (4) and efficient computation algorithms, LocHap is ultra-fast in analyzing

whole-genome and whole-exome data, taking usually less than a minute for a whole genome.

LocHap pipeline

A computational pipeline (Fig. 3) supports LocHap applications. LocHap analyzes one sample at a time

and can be used sequentially or in parallel for the analysis of multiple samples. For a single sample, the

input of LocHap includes 1) a bam file with the associated index bai file and 2) a corresponding vcf file that

contains the SNVs in the sample, called by any standard variant calling algorithm, such as GATK’s [27–29]

UnifiedGenotyper tool. The output of LocHap is a set of LHVs stored in hcf files, one for each sample.

Haplotype Call Format (hcf)

Each line in the hcf file contains information about one particular LHV segment. Below is a line in an hcf

file from analysis of real-world data.

##CHROM POS REF NumSig HAP Call All HAP DataForSample = NA12878

chr1 4369613, 4369623 GA 3 GA(1.000), AA(1.000), GG(0.985) GA(1.000; 0.000), AA(1.000; 0.000), GG(0.985; 0.005), AG(0.000; 0.254)

nSNP = 2;nTot = 90;nACGT = 75;nBlank = 15;nDisc = 0;nM0 = 41;nM1 = 34;nM2 = 15;nClus = 3;

Same as vcf, an hcf file is a tab-delimited text file. After the initial header fields, each line in the hcf

file represents a local haplotype (might not be a variant) and has seven column fields. Also, at the end

of each hcf file, a summary stating the total number of SNVs in the vcf file, number of segments with

zero significant haplotypes, one significant haplotype, two significant haplotypes and so on, are given (see

Supplemental Data).
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Post Processing

The inferred LHVs can be filtered to remove false positives caused by artifact and noise in the sequencing

data. The filters are devised to remove dubious reads and SNVs. In NGS data, known artifact and error

affect SNV calling [21] by erroneously calling or aligning the bases on short reads. However, they do not

artificially create additional local haplotypes which require more sophisticated changes to the bases of short

reads across multiple SNVs. The typical artifact and error often changes the base calling or alignment for

a single locus and usually affect all the short reads in the region. Therefore, LHV-based inference is less

prone to the errors and artifacts for SNV calling. Nonetheless, we apply a set of optional and customizable

filters (Supplementary Data) with different stringency levels for post-processing of the LHVs in the output

hcf files. Currently, despite the large amount of effort directed by the community [21] the noise and error

in NGS experiments and data preprocessing cannot be statistically modeled or quantified. There is no

consensus on filtering the variant calls from various analysis pipelines. We present a conservative filtering

pipeline that is heavily biased towards reducing FDR, so that reported LHVs are of high confidence. The

proposed filtering depends on various parameters that can be modified to enforce different degrees of filter

stringency. A more stringent filter results in fewer LHVs at the end.

The proposed filters can remove SNVs that are too close to each other (within, say 50 bps) and SNVs

that are close to other types of variants such as indels. It has been noted [30, 31] that these variant calls

are not trustworthy due to artifacts and base calling errors in the data. In addition, our filters can remove

SNVs for which most reads are aligned to the SNV at a base near the end of the reads. The reason is that

bases called towards the end of a read are usually of low quality, which then affect the reliability of the

alignment. Lastly, SNVs mapped by reads with strand bias [32] are also filtered.

Integrated Genome Viewer (IGV) Compatibility

For better visualization, we provide an additional IGV-compatible format so that LHV segments can be

visually examined in the popular genome visualization tool IGV [22]. A snapshot of five hcf files in IGV is

shown in Fig. 4. The details of the corresponding command is given in Quick Manual (http://compgenome.

org/lochap/code_release/QuickManual-LocHap-release-v1.0.pdf). Note that the LHVs are shown

by red bars and non variants are shown by blue bars.

RESULTS AND DISCUSSION

Simulation

We first demonstrate the utility of the proposed statistical model using simulated data. In all of the

following examples we used eir = 0.001 as the default value and FDR threshold was set at f0 = 0.01.

Also we assumed that the probability of observing more than two different alleles at a particular locus in

a genome was considered rare. This is assumed because of the small chance of having a point mutation

occurring twice at the same nucleotide [33–35]. All of the simulation examples were based on short reads

data generated for a single segment. Also, we only show examples with a small number of short reads. When
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a large number of reads were simulated, the proposed models performed very well, easily recovering the

simulation truth. Tabulated posterior probabilities for all the scenarios are provided in the Supplementary

Data (Tables S1-S9).

Simulation Scenario 1 We generated eight short reads covering two SNVs. Assuming at each SNV

that only two alleles could be observed, there were 22 = 4 possible haplotypes. The simulated short reads

had genotypes

D = {GA,GA,GA,GA,GC,GC,AC,AC}.

Applying LocHap, we inferred three significant haplotypes with the following sequences and posterior

probabilities.

{GA : 1.00, GC : > 0.99, AC : > 0.99}

Simulation Scenario 2 In this scenario, we generated eight short reads, each of which only covered one

of the two SNVs.

D = {A−,−A,G−, G−,−G,−G,−G,−G}.

Here the read labeled “A−” indicated that the first SNV position had a readout A and the read did not

cover the second SNV position. Hence, we used “−” sign to represent a missing genotype. Using LocHap,

no haplotypes can be inferred to be present based on the FDR threshold f0 = 0.01.

Simulation Scenario 3 In this scenario, we simulated five short reads covering three SNVs with geno-

types given by

D = {AGA,AGA,AGC,AGC,GAC}.

LocHap called three significant haplotypes {AGA,AGC,GAC} with posterior probabilities all > 0.99.

Simulation Scenario 4 In this scenario, we generated eight short reads covering three SNVs, given by

D = {AAA,AAT,ACA,ACT,GAA,GAT,GCA,GCT}.

LocHap did not identify any significant haplotypes. This is due to the lack of strong evidence for any of

the haplotypes as each of them is supported by only one read. The proposed model correctly recognized

the uncertainty in the data and did not provide statistical significance for any haplotypes.

Simulation Scenario 5 This scenario is similar to scenario 4 but here we generated five short reads

each for the haplotypes AAA, AAT and ACA. The data is given by

D = {AAA× 5, AAT × 5, ACA× 5, ACT,GAA,GAT,GCA,GCT}.

Although LocHap did not find any significant haplotypes in the previous scenario, LocHap called three

significant haplotypes {AAA,AAT,ACA} with posterior probabilities all equal to 1.00 because of more
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reads are generated for these three haplotypes. It is easy to see that with more number of reads our

inference model would work more accurately.

Simulation Scenario 6 This scenario is similar to scenario 1 but here we generated five times more

number of short reads for every categories. The data is given by

D = {GA× 20, GC × 10, AC × 10}.

Applying LocHap, we again inferred three significant haplotypes with posterior probabilities all equal to

1.00.

Simulation Scenario 7 This scenario is same as the real-life data in Fig.1(a). The data is given by

D = {GG× 23, GC × 10, AG× 9,−G× 43, G−×26, A−×13,−C × 11}.

Applying LocHap, we inferred three significant haplotypes {GG,GC,AG}with posterior probabilities all

equal to1.00.

Simulation Scenario 8 This scenario is same as the real-life data Fig.1(b). The data is given by

D = {TT × 22, CG× 14, CT × 13,−T × 46,−G× 46, C −×34, T −×12}.

Applying LocHap, we again inferred three significant haplotypes {TT,CG,CT} with posterior probabilities

all equal to 1.00.

All eight scenarios show that LocHap performs well. When the number of reads increases, the confidence

in the statistical inference also increases.

Three DNA-Seq Data Sets

We applied LocHap to three different data sets, among which two were public and one from our own in-

house validation experiments. We provide main findings next and put analysis details in the Supplementary

Data.

Head and Neck Cancer (HNC) Data We analyzed WES data of 30 matched tumor and blood

sample pairs (total 60 samples) from patients with head and neck cancer [36]. Whole exome Sequence

Read Archive (SRA) files of matched tumor and normal samples were downloaded from the Sequence

Read Archive (http://www.ncbi.nlm.nih.gov/sra). Standard bioinformatics analyses were performed

to extract fast-q sequences, map short reads, and call SNVs. We generated bam files (one per sample) and

a vcf file for all the samples. The bam files contained short read sequences and alignments, and the vcf file

contained SNV calls of all the samples. The bam files with associated bai and vcf files were provided to the

LocHap pipeline, which subsequently generated 60 hcf files, one for each sample.
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Fig. 5a shows a circos plot [37] of the called LHVs. Most LHVs are located in different genomic regions

across patients, suggesting somatic mutations occurred randomly across the genome. Also, the fact that

called LHVs are mostly different between patients indirectly shows that LHV calling is not driven by

artifact and noise in the NGS data. The reported LHVs all passed the aforementioned noise filtering with

stringent criteria. Read depth of one exome of a normal sample is shown in Fig. 5b. A few LHVs are

mapped with large numbers of reads but overall the read depths between LHVs and non-variant regions are

comparable. Most LHs are not LHVs, having no more than two genotypes and most LHVs possess three

genotypes (Fig. 5c). Tumors in general possess more LHVs than corresponding normal samples (Fig. 5d)

and chromosomes 9, 14 and 17 are “hotspots” for LHVs exhibiting higher frequencies in tumors than

blood samples (Fig. 5e). Transitions are more frequent than transversions (Fig. 5f), as expected. Finally,

overlapping LHVs are present in both tumor and the matched blood samples for each of the 30 patients

(Fig. 6), while the tumor and blood samples also possess unique LHVs of their own.

Table 1 summarizes the statistics from the unfiltered hcf file from one particular normal blood sample.

CEU-TRIO Data from 1,000-Genomes Project We applied LocHap to WGS data of a CEU TRIO

family of father, mother and child from the 1,000-Genomes project (http://www.1000genomes.org/). The

analysis procedure was identical to the HNC data, except here we have WGS data from three members

of a family. Genome-wide LHVs (Fig. 7a) are found in all three individuals with father having the largest

number of LHVs and daughter the smallest (Fig. 7b). This reflects the evolutionary conjecture that somatic

mutations emerge over time as a result of accumulating mitotic errors and that the longer an individual

lives, the more likely somatic mosaicism is seen on the genome [18]. Similar to the results obtained in the

previous analysis of cancer WES data, most LHs are not LHVs and most LHVs possess three genotypes

(Fig. 7c). Most LHVs reside in intergenic and intronic regions with less than 1% in exons (Fig. 7d). Here

again transitions are more prevalent than transversions (Fig. 7e). We called CNVs using CNVnator [38].

Convincingly, CNVs are not observed for most LHVs regions, suggesting that the LHVs are not associated

with CNVs, a potential confounder for LHV calling. There are almost no overlapping LHVs across the

three family members. This is expected since LHVs are results of somatic mutations, which do not usually

re-occur in different individuals. Under the most stringent filter, on average 400-500 LHVs are reported

per genome using the WGS data in CEU trio compared with 4-5 per exome using the WES data from the

HNC sample.

Table 2 summarizes the statistics from the unfiltered hcf file from one particular sample (NA12891) in

this dataset.

Validation In order to validate our results, we sequenced whole blood DNA from three members of a

parent-child trio using two different sequencing platforms, Complete Genomics, Inc. (CGI)

(http://www.completegenomics.com/documents/DataFileFormats_Standard_Pipeline_2.5.pdf,

http://cgatools.sourceforge.net/docs/1.8.0/cgatools-user-guide.pdf) and Illumina whole

genome sequencing (ILMN) (http://www.illumina.com/applications/sequencing.html). All mem-

bers of the trio were healthy. Their blood samples were collected between 2007 and 2012 and sequenced by

CGI in 2012 [39]. We also sequenced DNA from the same three samples using the ILMN platform in 2014.
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Because ILMN and CGI utilized different sequencing technologies and the sequencing experiments were

performed at separate times by more than two years apart, results from the two sequencing experiments

serve to validate each other.

NGS data produced by both technologies were analyzed using the LocHap pipeline. At the end, for each

of the two data sets we generated a list of LHV. We then overlapped the two lists of LHVs, and identified

shared LHVs between both data sets. Nine LHVs overlapped between the two data sets in the child;

10 LHVs overlapped in the mother and 15 LHVs overlapped in the father. We applied highly stringent

filtering rules (Supplemental Data) to ensure high quality of the reported LHVs, although such filtering

could also remove true LHVs with weak confidence. Also, many LHVs were excluded due to insufficient

evidence from the CGI data. Fig. 8 shows the locations of LHVs for the CGI and ILMN data. Fig. 9

presents two LHV examples that are shared between CGI and ILMN data. For these two LHVs, the short

reads provide direct evidence of somatic mosaicism – the reads suggest that at least three local haplotypes

must be present.

These analyses provide evidence supporting our hypothesis that normal cells in a healthy person could

be genetically heterogeneous and possess distinct populations of somatic cells, a phenomenon also observed

in [5]. Specifically, in all three individuals there are LHVs that are discovered by independent sequencing

platforms from different experimentalists at different times.

Discussion

Through a novel means of analyzing NGS data, LocHap attempts to reveal potential somatic mosaicism

in the form of LHVs. We implement Bayesian hierarchical models that borrow strength from the mapped

short reads to infer the number and sequences of LHVs genome-wide. In applications of LocHap using

deep-sequencing data, we provide evidence that supports the existence of normal somatic mosaicism (NSM)

and tumor somatic mosaicism (TSM) at single-nucleotide level. Applying LocHap to 30 matched blood

and tumor samples, we find LHVs in exomes of normal blood and tumor samples. The frequencies of

LHVs are in general higher in tumor samples (one-sided paired t-test, p-value < 0.0001). Performing the

analysis on CEU trio from the 1,000-genome project, we confirm the findings of genome-wide LHVs and

also identify an increasing trend of LHV occurrences with aging (chi-squared test [40] for trend, p-value

< 0.0001). Based on our results, we propose three hypotheses that deserve future investigation.

1. Similar to cancer cells, non-cancer cells undergo random mutation events that could potentially lead

to subclonal cell populations, resulting in genome-wide somatic mosaicism within individuals.

2. The probability of acquiring NSM increases with the age of an individual, owning to accumulating

mutation burden.

3. In general, TSM is more prevalent than NSM.

LocHap is different from existing subclonal callers [35,41–47] in a fundamentally distinct way. LocHap

provides direct evidence (e.g., examples in Fig. 1) of genome mosaicism in both non-cancer and cancer cells.

The units of analysis under LocHap are haplotypes, each as a scaffold of SNVs. In contrast, most subclone
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callers in the literature analyze allelic fractions of individual SNVs. We argue that LocHap provides a

more direct view on genome mosaicism for somatic samples. The power of detecting LHVs is affected by

the length of paired-end reads and coverage. In this context, it is important to note that an unexpected

insert size in a paired-end read is handled by either initial choice of the value K (if it is too large) or by

using a post-processing filter (if it is too small).In addition, our analysis does not include paired-end reads

that are not properly mapped since these reads do not provide reliable information about LHVs.

Naturally, sequencing coverage, quality and read length affect the performance of LocHap. Deeper

coverage allows local haplotype variants with small population frequencies in the sample to be detected.

Longer read length (and/or insert length) allows SNVs that are farther apart to be phased and therefore

improve the chance of detecting LHVs. In our WES data our coverage was about 30X with read length

75bps and in WGS data we have about 60X coverage with read length 100bps. We found that our LocHap

performed well in reporting LHVs under these conditions. For detail of all the bioinformatics pipelines,

filters and parameters, we refer the readers to the Supplemental data.

Our main purpose is not to identify all the LHVs in the genome. Instead, we aim to utilize existing

short-read NGS data and provide a new method for detecting sample heterogeneity and mosaicism based

on LHVs. Presence of LHVs itself supports mosaicism since a homogeneous human biological sample

cannot harbor LHVs.

LocHap is available at http://www.compgenome.org/lochap/ for free download. A manual is provided

along with the software. It is ultrafast in calling LHVs. For one WES sample with about 30X depth of

coverage, whole-exome LHV calling by LocHap took about 11 seconds on a Macbook Pro (2.8GHZ Intel

Core i7 and 16GB 1600 MHz DDR3 memory). For each WGS data set with about 60X depth of coverage

the analysis took about 47 seconds.

Cellular mosaicism based on LHVs would facilitate studies on heterogeneity of cell populations. Avail-

ability of NGS data allows for more powerful investigation of somatic cell subpopulations. The resolution of

analysis can be at single nucleotide level, as opposed to mega-bases for microarray data. Further validation

of somatic mosaicism and its relationship to aging and diseases is needed using much bigger sample sizes.

Such effort could help us reveal and quantify heterogeneity in non-cancer and cancer samples, potentially

affecting cancer diagnosis and prognosis.

CONCLUSION

Through LocHap we provide a new approach to extract information of local haplotypes from NGS data for

a single sample. We found wide-spread LHVs across genome in both tumor and non-tumor samples. These

results and software tools can be used for further investigation of somatic mosaicism in human samples,

helping investigators to understand the frequency and genome locations of mosaic events. Thanks to the

ultrafast speed of LocHap, it can be used to analyze a large number of samples using a single computer or

a small cluster. The newly developed hcf files follow the existing format standards for vcf files and can be

visualized in the popular tool IGV.
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Figures

(a)

(b)

Figure 1: Two examples of LHVs based on direct observations of aligned short reads. The pairs of a single
short read are marked with orange and green colored arrow, respectively. Panel (a): an LHV called from
WES data of a normal blood sample. The haplotype consists of two SNVs separated by 97 base pairs in a
coding region of gene SYT15. Among all the short reads mapped to this region, 23, 10 and 9 short reads
are mapped to both SNVs and exhibit alleles GG, GC, and AG, respectively. Due to the large count of
the least frequent allele (AG) and the combined information from all other short reads, LocHap calls three
local haplotypes with high statistical confidence, making it a variant (i.e., an LHV). Panel (b): an LHV
called from WGS data of a normal blood sample from a normal individual (NA12878 in the CEU TRIO
family in the 1,000 genome project). The local haplotype consists of two SNVs separated by 300 base pairs
in an intronic region of an ncRNA FAM66D. Again, similar haplotype variants are seen based on the short
reads mapped to both SNVs. In both examples, some reads are mapped to only one of the two SNVs.
These reads provide partial information on the existence of certain haplotypes. For example, reads with
“-G” in panel (a) are only mapped to the second SNV with genotype “G”. They support that haplotypes
AG or GG might be present in the sample. Hence, reads mapped to both SNVs and reads mapped to at
least one SNV are used in the statistical models of LocHap.
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Figure 2: Illustration of DNA segments in LocHap. The first segment consists of two SNVs (SNV 1 and 2)
and the second one has three SNVs (SNV 3, 4 and 5). SNV 3 is more than K base pairs from its adjacent
SNVs 2 & 5, and therefore is not included in any segment.

bam,bai and vcf files

LocHap Optional Filters

Filtered hcf filehcf file

Figure 3: Overview of the LocHap Pipeline.

sample IDs LHVs are denoted by red bars

Figure 4: Visualization of hcf files in IGV.
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Figure 5: LHV calling for a head & neck cancer WES data set with 30 pairs of matched tumor and normal
samples. (a) A circos plot of prevalence of LHVs for 5 arbitrarily selected sample pairs. Each red dot indicates the
existence of at least one LHV in the corresponding exonic region of 1M bps. The height of a red dot indicates the
number of LHVs present in the segment of 1M bps long. A pair of matched tumor and normal samples are arranged
as adjacent circles with grey and blue color, respectively. (b) Comparison of read depth for genome regions with
and without LHVs. No apparent difference is observed. (c) Histogram showing the frequencies of DNA segments
(vertical axis) with different numbers of haplotype calls (horizontal axis). Most regions have up to two haplotypes,
i.e., no variants. Regions with greater than two haplotypes are variants implying genome mosaicism. (d) A total
of 30 line plots, one for each pair of matched tumor (red) and normal (blue) samples from an individual patient.
The number of LHVs is shown for each chromosome for each patient. In general, tumors exhibit more LHVs
implying more mosaicism. (e) Summary of (d). For each chromosome, a blue dot is the median of the difference
in the number of LHVs between tumor and its matched normal sample across 30 patients; point-wise confidence
intervals are shown as purple bands. Tumors show much higher frequencies of LHVs on chromosomes 9, 14, and
17, indicating potential disease-related variations on these regions. (f) Summary of sequence mutations for the
SNVs within called LHVs. Transitions are much more prevalent than transversions.
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Figure 6: Venn diagrams showing the overlap of LHV calling for a head & neck cancer WES data set with 30 pairs

of matched tumor and normal samples. For each pair, LHV counts for tumor and the matched normal sample are

shown in red and blue color, respectively. In most of the samples, number of LHVs in tumor is greater than that

of the matched normal except for the last 5 samples where the numbers are comparable or number of LHVs found

in the tumor sample is less the corresponding number in the matched normal sample.
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Figure 7: LHV calls for normal samples from a CEU trio of father, mother, and daughter in the 1,000 genome
project based on WGS data. (a) A circos plot of prevalence of LHVs. Outer 3 arcs and inner 3 arcs represent
results of TRIO samples filtered by type III filter and type I filter, respectively. See Materials and Methods section
for details of the filters. Each red dot indicates the existence of at least one LHV in the corresponding genomic
region of 1M bps. The height of a red dot indicates the number of LHVs present in the region. (b) Comparison
of the three family members in the number of LHVs per chromosome. The daughter has the smallest and the
father has the largest number of LHVs in all chromosomes (autosome). (c) Histogram showing the frequencies
of DNA segments (vertical axis) with different numbers of haplotype calls (horizontal axis). Most segments have
up to two haplotypes indicating no variant. Segments with greater than two haplotypes are variants implying
genome mosaicism. (d) Functional annotations of the genome regions where LHVs are found. Most are intergenic
and intronic, with < 1% LHVs in exons. (e) Summary of sequence mutations for the SNVs within called LHVs.
Transitions are much more prevalent than transversions. (f) Copy number calls based on CNVnator [38] are
directly compared with LHVs for all three family members. In most cases, there are no copy number variations
on genome regions where LHVs are found. Copy numbers are represented in the outer arc and LHVs are shown
in the adjacent inner arc in the same color for each sample.



Figure 8: Summary of the LHVs found in the father, mother, and daughter of a family based on both Illumina

(ILMN) and CGI data. The ages are 57, 47, and 22, respectively. Top panel: A circos plot of prevalence of LHVs

for ILMN data. The 3 colored rings describe the genome-wide prevalence and locations of the LHVs for the three

family members. Each red triangle dot indicates the existence of at least one LHV in the corresponding genomic

region of 1M base pairs. The higher a red dot resides, the larger number of LHVs present in the region. Bottom

panel: A circos plot of prevalence of LHVs for CGI data. The plot follows the same arrangement as in the Top

panel.



LHV 1 LHV 2

Figure 9: Two examples of LHVs that overlap between CGI and ILMN data. LHV1 consists of two single

nucleotide variants (SNVs) separated by 26 base pairs on Chromosome 10. For the ILMN data (top tables),

among all the short reads mapped to this region, 9, 12 and 6 short reads are mapped to both SNVs and exhibit

genotypes CC, GC, and GT, respectively. For the CGI data (bottom tables), those numbers are 3, 9, and 2

respectively. Also, many other reads are mapped to one of the SNVs for both data, which reinforces the finding.

Statistical inference shows high significance supporting more than two haplotypes in the region. LHV 2 consists

of two SNVs separated by 30 base pairs. For the ILMN data, 7, 4 and 3 reads are mapped to both SNVs with

genotypes CA, CG and TA, respectively. Those numbers are 4, 4 and 4 for the CGI data.
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No. of Variants Segments with no. of significant haplotypes Segments with more than 3 variants

0 1 2 3 4 5 6 7 8 (Not Analyzed)
137886 460 85 2070 90 11 0 0 0 0 457

Table 1: Statistics from hcf file of a sample from HNC dataset

No. of Variants Segments with no. of significant haplotypes Segments with more than 3 variants

0 1 2 3 4 5 6 7 8 (Not Analyzed)
6378548 43322 17216 232750 22839 1430 54 2 0 0 196078

Table 2: Statistics from hcf file of a sample from CEU trio dataset
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